David Glowny

Role: Member

Major: Computer & Systems Engineering / Computer Science

Year: Class of 2018 (Senior)

Engineering is important to me because it is a truly exciting career that makes a huge difference in the world. Since we all depend on a multitude of devices and appliances in our daily lives, everyone depends on engineers to make great creations, and I am excited to be one of those creators.


Milford, CT

Extracurricular Activities

  • Cru


  • Sikorsky Aircraft (Software)

Favorite Quote

“We are what we repeatedly do. Greatness then, is not an act, but a habit” - Aristotle


Design of An Athlete Other Presenters: Tyler Graf, Timothy Spafford, Enxhi Marika

The physics and engineering behind the sports that we love and hear about every day. We speak about why the bodies and skill sets that certain athletes have benefit them in their respective sports, but may not be optimal in other sports. We will also speak about the engineering that goes into designing protective equipment as well as creating and using biometric technology. Hands on activities include force plates to measure jump force, photo gates to measure speed, and EMGs to measure muscle activity as well as the opportunity for students to use the equipment to measure anything they think would work.

Mathematics and Path Finding Robots Other Presenters: Matthew Jahnes, Timothy Spafford

The presentation begins with examples and definitions of a robot, algorithm, and path finding. Then we start a small discussion on the applications of mathematics in robotics by providing examples of both simple and complex applications. We break mid-presentation for the hands on activity. The hands on activity mostly involves the simple equation: circumference * # of rotations = distance traveled. The end goal of the activity is to have the kids program a small NXT robot to move and pick up a ball without using trial and error. We give them a handout that has the recommended paths and distances the robot should cover as well as information on the dimensions of the robot so they can make the calculations. After the hands on activity we close the presentation with a short discussion on modeling the behavior of some small single celled organisms (E-coli) with mathematical algorithms as well as the future of path finding robotics (like autonomous cars).

Digital Sound Other Presenters: Jane Edgington, Timothy Spafford, Brook Rulewich, Nickolas Ziter, Mallory Gordon, Denver Overend, Liam Fahey, Casey-Ellen Collette, Amy Reynolds

People rely on the engineering behind the science of sound everyday, whether its through listening to an Ipod, setting up speakers for a public event, or even through hearing aids. And yet, in this digital age, it is not clear to many people how exactly sound is stored in a digital device, what sound actually is, and how sound can be produced electronically. Therefore, this presentation displays and explains the intriguing engineering behind sound and its application in electronic devices.